Multi-Domain Joint Semantic Frame Parsing Using Bi-Directional RNN-LSTM

نویسندگان

  • Dilek Z. Hakkani-Tür
  • Gökhan Tür
  • Asli Çelikyilmaz
  • Yun-Nung Chen
  • Jianfeng Gao
  • Li Deng
  • Ye-Yi Wang
چکیده

Sequence-to-sequence deep learning has recently emerged as a new paradigm in supervised learning for spoken language understanding. However, most of the previous studies explored this framework for building single domain models for each task, such as slot filling or domain classification, comparing deep learning based approaches with conventional ones like conditional random fields. This paper proposes a holistic multi-domain, multi-task (i.e. slot filling, domain and intent detection) modeling approach to estimate complete semantic frames for all user utterances addressed to a conversational system, demonstrating the distinctive power of deep learning methods, namely bi-directional recurrent neural network (RNN) with long-short term memory (LSTM) cells (RNN-LSTM) to handle such complexity. The contributions of the presented work are three-fold: (i) we propose an RNN-LSTM architecture for joint modeling of slot filling, intent determination, and domain classification; (ii) we build a joint multi-domain model enabling multi-task deep learning where the data from each domain reinforces each other; (iii) we investigate alternative architectures for modeling lexical context in spoken language understanding. In addition to the simplicity of the single model framework, experimental results show the power of such an approach on Microsoft Cortana real user data over alternative methods based on single domain/task deep learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supplementary Material: Reinforced Video Captioning with Entailment Rewards

Our attention baseline model is similar to the Bahdanau et al. (2015) architecture, where we encode input frame level video features to a bi-directional LSTM-RNN and then generate the caption using a single layer LSTM-RNN, with an attention mechanism. Let {f1, f2, ..., fn} be the frame-level features of a video clip and {w1, w2, ..., wm} be the sequence of words forming a caption. The distribut...

متن کامل

Bi-directional LSTM Recurrent Neural Network for Chinese Word Segmentation

Recurrent neural network(RNN) has been broadly applied to natural language processing(NLP) problems. This kind of neural network is designed for modeling sequential data and has been testified to be quite efficient in sequential tagging tasks. In this paper, we propose to use bi-directional RNN with long short-term memory(LSTM) units for Chinese word segmentation, which is a crucial preprocess ...

متن کامل

Context Memory Networks for Multi-objective Semantic Parsing in Conversational Understanding

The end-to-end multi-domain and multi-task learning of the full semantic frame of user utterances (i.e., domain and intent classes and slots in utterances) have recently emerged as a new paradigm in spoken language understanding. An advantage of the joint optimization of these semantic frames is that the data and feature representations learnt by the model are shared across different tasks (e.g...

متن کامل

A Deep Learning Analytic Suite for Maximizing Twitter Impact

We present a series of deep learning models for predicting user engagement with twitter content, as measured by the number of retweets for a given tweet. We train models based on classic LSTM-RNN and CNN architectures, along with a more complex bi-directional LSTM-RNN with attention layer. We show that the attention RNN performs the best with 61% validation accuracy, but that all three deep lea...

متن کامل

Syntax Aware LSTM Model for Chinese Semantic Role Labeling

As for semantic role labeling (SRL) task, when it comes to utilizing parsing information, both traditional methods and recent recurrent neural network (RNN) based methods use the feature engineering way. In this paper, we propose Syntax Aware Long Short Time Memory(SALSTM). The structure of SA-LSTM modifies according to dependency parsing information in order to model parsing information direct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016